一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - python實現泊松圖像融合

python實現泊松圖像融合

2021-03-22 00:09yjl9122 Python

這篇文章主要為大家詳細介紹了python實現泊松圖像融合,具有一定的參考價值,感興趣的小伙伴們可以參考一下

本文實例為大家分享了python實現泊松圖像融合的具體代碼,供大家參考,具體內容如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
```
from __future__ import division
import numpy as np
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt
#sns.set(style="darkgrid")
 
 
def DST(x):
  """
  Converts Scipy's DST output to Matlab's DST (scaling).
  """
  X = scipy.fftpack.dst(x,type=1,axis=0)
  return X/2.0
 
def IDST(X):
  """
  Inverse DST. Python -> Matlab
  """
  n = X.shape[0]
  x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
  return x/(n+1.0)
 
def get_grads(im):
  """
  return the x and y gradients.
  """
  [H,W] = im.shape
  Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dx[j,k] = im[j,k+1] - im[j,k]
  Dy[j,k] = im[j+1,k] - im[j,k]
  return Dx,Dy
 
def get_laplacian(Dx,Dy):
  """
  return the laplacian
  """
  [H,W] = Dx.shape
  Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k]
  Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
  return Dxx+Dyy
 
def poisson_solve(gx,gy,bnd):
  # convert to double:
  gx = gx.astype('float32')
  gy = gy.astype('float32')
  bnd = bnd.astype('float32')
 
  H,W = bnd.shape
  L = get_laplacian(gx,gy)
 
  # set the interior of the boundary-image to 0:
  bnd[1:-1,1:-1] = 0
  # get the boundary laplacian:
  L_bp = np.zeros_like(L)
  L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
           + bnd[1:-1,2:] + bnd[1:-1,0:-2] \
           + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
  L = L - L_bp
  L = L[1:-1,1:-1]
 
  # compute the 2D DST:
  L_dst = DST(DST(L).T).T #first along columns, then along rows
 
  # normalize:
  [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
  D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
  L_dst = L_dst/D
 
  img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns
 
  img = bnd.copy()
 
  img[1:-1,1:-1] = img_interior
 
  return img
 
def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
  """
  combine images using poission editing.
  IM_TOP and IM_BACK should be of the same size.
  """
  assert np.all(im_top.shape==im_back.shape)
 
  im_top = im_top.copy().astype('float32')
  im_back = im_back.copy().astype('float32')
  im_res = np.zeros_like(im_top)
 
  # frac of gradients which come from source:
  for ch in xrange(im_top.shape[2]):
    ims = im_top[:,:,ch]
    imd = im_back[:,:,ch]
 
    [gxs,gys] = get_grads(ims)
    [gxd,gyd] = get_grads(imd)
 
    gxs *= scale_grad
    gys *= scale_grad
 
    gxs_idx = gxs!=0
    gys_idx = gys!=0
    # mix the source and target gradients:
    if mode=='max':
      gx = gxs.copy()
      gxm = (np.abs(gxd))>np.abs(gxs)
      gx[gxm] = gxd[gxm]
 
      gy = gys.copy()
      gym = np.abs(gyd)>np.abs(gys)
      gy[gym] = gyd[gym]
 
      # get gradient mixture statistics:
      f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
      f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
      if min(f_gx, f_gy) <= 0.35:
        m = 'max'
        if scale_grad > 1:
          m = 'blend'
        return blit_images(im_top, im_back, scale_grad=1.5, mode=m)
 
    elif mode=='src':
      gx,gy = gxd.copy(), gyd.copy()
      gx[gxs_idx] = gxs[gxs_idx]
      gy[gys_idx] = gys[gys_idx]
 
    elif mode=='blend': # from recursive call:
      # just do an alpha blend
      gx = gxs+gxd
      gy = gys+gyd
 
    im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)
 
  return im_res.astype('uint8')
 
 
def contiguous_regions(mask):
  """
  return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
  True and we cover all such regions
  """
  in_region = None
  boundaries = []
  for i, val in enumerate(mask):
    if in_region is None and val:
      in_region = i
    elif in_region is not None and not val:
      boundaries.append((in_region, i))
      in_region = None
 
  if in_region is not None:
    boundaries.append((in_region, i+1))
  return boundaries
 
 
if __name__=='__main__':
  """
  example usage:
  """
  import seaborn as sns
 
  im_src = cv2.imread('../f01006.jpg').astype('float32')
 
  im_dst = cv2.imread('../f01006-5.jpg').astype('float32')
 
  mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
  # print mu
  sz = (1920,1080)
  im_src = cv2.resize(im_src,sz)
  im_dst = cv2.resize(im_dst,sz)
 
  im0 = im_dst[:,:,0] > 100
  im_dst[im0,:] = im_src[im0,:]
  im_dst[~im0,:] = 50
  im_dst = cv2.GaussianBlur(im_dst,(5,5),5)
 
  im_alpha = 0.8*im_dst + 0.2*im_src
 
  # plt.imshow(im_dst)
  # plt.show()
 
  im_res = blit_images(im_src,im_dst)
 
  import scipy
  scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))
 
  im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
 
  # plt.imshow(im_alpha_L)
  # plt.show()
  for i in xrange(500,im_alpha_L.shape[1],5):
    l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
    l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
    l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]
 
 
    with sns.axes_style("darkgrid"):
      plt.subplot(2,1,2)
      #plt.plot(l_alpha,label='alpha')
 
      plt.plot(l_poisson,label='poisson')
      plt.hold(True)
      plt.plot(l_actual,label='actual')
      plt.legend()
 
      # find "text regions":
      is_txt = ~im0[i,:]
      t_loc = contiguous_regions(is_txt)
      ax = plt.gca()
      for b0,b1 in t_loc:
        ax.axvspan(b0, b1, facecolor='red', alpha=0.1)
 
    with sns.axes_style("white"):
      plt.subplot(2,1,1)
      plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
      plt.hold(True)
      plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
      plt.axis('image')
      plt.show()
 
 
  plt.subplot(1,3,1)
  plt.imshow(im_src[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,2)
  plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,3
  plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
  plt.show()

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/yjl9122/article/details/72730236

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: www.男人的天堂 | 天天干狠狠操 | 2020韩国r级理论片在线观看 | 国产成人精品日本亚洲网址 | 日本嫩交| 美女啪啪国产 | 女色在线观看免费视频 | 国产愉拍| 999精品视频这里只有精品 | 国产另类视频一区二区三区 | 国产成人一区二区三区影院免费 | 久久精品热在线观看30 | 久久久久久久久a免费 | 思思玖玖 | 日日干影院 | 日本一区二区三区久久精品 | 欧美精品国产第一区二区 | 四虎影院免费在线播放 | 美女的隐私脱裤子无遮挡 | 好大好硬快点好爽公 | 2021国产麻豆剧传媒新片 | 互换娇妻爽文100系列小说 | 蛮荒的童话未删减在线观看 | 大香焦在线观看 | 午夜小视频免费 | 18美女光胸光屁屁洗澡 | 国产高清在线播放刘婷91 | 国产目拍亚洲精品一区二区三区 | 非洲黑人xxxxxbbbbb | 精品国产原创在线观看视频 | 亚洲免费高清视频 | 精品视频一区二区观看 | kkkk4444在线看片 | 夫妻性生活在线 | 国产成人在线免费视频 | 午夜影院网站 | 男人天堂网页 | 欧美破处摘花 | 午色影院| 春宵福利网站在线观看 | 国产靠逼视频 |