網易易盾:dun.163.com
1
2
3
|
* 驗證碼地址:https: //dun.163.com/trial/jigsaw * 使用OpenCv模板匹配 * Java + Selenium + OpenCV |
產品樣例
接下來就是見證奇跡的時刻!
注意?。?!
· 在模擬滑動時不能按照相同速度或者過快的速度滑動,需要向人滑動時一樣先快后慢,這樣才不容易被識別。
模擬滑動代碼↓↓↓
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
/** * 模擬人工移動 * @param driver * @param element頁面滑塊 * @param distance需要移動距離 */ public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException { int randomTime = 0 ; if (distance > 90 ) { randomTime = 250 ; } else if (distance > 80 && distance <= 90 ) { randomTime = 150 ; } List<Integer> track = getMoveTrack(distance - 2 ); int moveY = 1 ; try { Actions actions = new Actions(driver); actions.clickAndHold(element).perform(); Thread.sleep( 200 ); for ( int i = 0 ; i < track.size(); i++) { actions.moveByOffset(track.get(i), moveY).perform(); Thread.sleep( new Random().nextInt( 300 ) + randomTime); } Thread.sleep( 200 ); actions.release(element).perform(); } catch (Exception e) { e.printStackTrace(); } } /** * 根據距離獲取滑動軌跡 * @param distance需要移動的距離 * @return */ public static List<Integer> getMoveTrack( int distance) { List<Integer> track = new ArrayList<>(); // 移動軌跡 Random random = new Random(); int current = 0 ; // 已經移動的距離 int mid = ( int ) distance * 4 / 5 ; // 減速閾值 int a = 0 ; int move = 0 ; // 每次循環移動的距離 while ( true ) { a = random.nextInt( 10 ); if (current <= mid) { move += a; // 不斷加速 } else { move -= a; } if ((current + move) < distance) { track.add(move); } else { track.add(distance - current); break ; } current += move; } return track; } |
操作過程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
/** * 獲取網易驗證滑動距離 * * @return */ public static String dllPath = "C://chrome//opencv_java440.dll" ; public double getDistance(String bUrl, String sUrl) { System.load(dllPath); File bFile = new File( "C:/EasyDun_b.png" ); File sFile = new File( "C:/EasyDun_s.png" ); try { FileUtils.copyURLToFile( new URL(bUrl), bFile); FileUtils.copyURLToFile( new URL(sUrl), sFile); BufferedImage bgBI = ImageIO.read(bFile); BufferedImage sBI = ImageIO.read(sFile); // 裁剪 cropImage(bgBI, sBI, bFile, sFile); Mat s_mat = Imgcodecs.imread(sFile.getPath()); Mat b_mat = Imgcodecs.imread(bFile.getPath()); //陰影部分為黑底時需要轉灰度和二值化,為白底時不需要 // 轉灰度圖像 Mat s_newMat = new Mat(); Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY); // 二值化圖像 binaryzation(s_newMat); Imgcodecs.imwrite(sFile.getPath(), s_newMat); int result_rows = b_mat.rows() - s_mat.rows() + 1 ; int result_cols = b_mat.cols() - s_mat.cols() + 1 ; Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1); Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 歸一化平方差匹配法TM_SQDIFF 相關系數匹配法TM_CCOEFF Core.normalize(g_result, g_result, 0 , 1 , Core.NORM_MINMAX, - 1 , new Mat()); Point matchLocation = new Point(); MinMaxLocResult mmlr = Core.minMaxLoc(g_result); matchLocation = mmlr.maxLoc; // 此處使用maxLoc還是minLoc取決于使用的匹配算法 Imgproc.rectangle(b_mat, matchLocation, new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar( 0 , 255 , 0 , 0 )); Imgcodecs.imwrite(bFile.getPath(), b_mat); return matchLocation.x + s_mat.cols() - sBI.getWidth() + 12 ; } catch (Throwable e) { e.printStackTrace(); return 0 ; } finally { bFile.delete(); sFile.delete(); } } /** * 圖片亮度調整 * * @param image * @param param * @throws IOException */ public void bloding(BufferedImage image, int param) throws IOException { if (image == null ) { return ; } else { int rgb, R, G, B; for ( int i = 0 ; i < image.getWidth(); i++) { for ( int j = 0 ; j < image.getHeight(); j++) { rgb = image.getRGB(i, j); R = ((rgb >> 16 ) & 0xff ) - param; G = ((rgb >> 8 ) & 0xff ) - param; B = (rgb & 0xff ) - param; rgb = ((clamp( 255 ) & 0xff ) << 24 ) | ((clamp(R) & 0xff ) << 16 ) | ((clamp(G) & 0xff ) << 8 ) | ((clamp(B) & 0xff )); image.setRGB(i, j, rgb); } } } } // 判斷a,r,g,b值,大于256返回256,小于0則返回0,0到256之間則直接返回原始值 private int clamp( int rgb) { if (rgb > 255 ) return 255 ; if (rgb < 0 ) return 0 ; return rgb; } /** * 生成半透明小圖并裁剪 * * @param image * @return */ private void cropImage(BufferedImage bigImage, BufferedImage smallImage, File bigFile, File smallFile) { int y = 0 ; int h_ = 0 ; try { // 2 生成半透明圖片 bloding(bigImage, 75 ); for ( int w = 0 ; w < smallImage.getWidth(); w++) { for ( int h = smallImage.getHeight() - 2 ; h >= 0 ; h--) { int rgb = smallImage.getRGB(w, h); int A = (rgb & 0xFF000000 ) >>> 24 ; if (A >= 100 ) { rgb = ( 127 << 24 ) | (rgb & 0x00ffffff ); smallImage.setRGB(w, h, rgb); } } } for ( int h = 1 ; h < smallImage.getHeight(); h++) { for ( int w = 1 ; w < smallImage.getWidth(); w++) { int rgb = smallImage.getRGB(w, h); int A = (rgb & 0xFF000000 ) >>> 24 ; if (A > 0 ) { if (y == 0 ) y = h; h_ = h - y; break ; } } } smallImage = smallImage.getSubimage( 0 , y, smallImage.getWidth(), h_); bigImage = bigImage.getSubimage( 0 , y, bigImage.getWidth(), h_); ImageIO.write(bigImage, "png" , bigFile); ImageIO.write(smallImage, "png" , smallFile); } catch (Throwable e) { System.out.println(e.toString()); } } /** * * @param mat * 二值化圖像 */ public static void binaryzation(Mat mat) { int BLACK = 0 ; int WHITE = 255 ; int ucThre = 0 , ucThre_new = 127 ; int nBack_count, nData_count; int nBack_sum, nData_sum; int nValue; int i, j; int width = mat.width(), height = mat.height(); // 尋找最佳的闕值 while (ucThre != ucThre_new) { nBack_sum = nData_sum = 0 ; nBack_count = nData_count = 0 ; for (j = 0 ; j < height; ++j) { for (i = 0 ; i < width; i++) { nValue = ( int ) mat.get(j, i)[ 0 ]; if (nValue > ucThre_new) { nBack_sum += nValue; nBack_count++; } else { nData_sum += nValue; nData_count++; } } } nBack_sum = nBack_sum / nBack_count; nData_sum = nData_sum / nData_count; ucThre = ucThre_new; ucThre_new = (nBack_sum + nData_sum) / 2 ; } // 二值化處理 int nBlack = 0 ; int nWhite = 0 ; for (j = 0 ; j < height; ++j) { for (i = 0 ; i < width; ++i) { nValue = ( int ) mat.get(j, i)[ 0 ]; if (nValue > ucThre_new) { mat.put(j, i, WHITE); nWhite++; } else { mat.put(j, i, BLACK); nBlack++; } } } // 確保白底黑字 if (nBlack > nWhite) { for (j = 0 ; j < height; ++j) { for (i = 0 ; i < width; ++i) { nValue = ( int ) (mat.get(j, i)[ 0 ]); if (nValue == 0 ) { mat.put(j, i, WHITE); } else { mat.put(j, i, BLACK); } } } } } // 延時加載 private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception { WebElement webElement = null ; boolean isWait = false ; for ( int k = 0 ; k < count; k++) { try { webElement = driver.findElement(by); if (isWait) System.out.println( " ok!" ); return webElement; } catch (org.openqa.selenium.NoSuchElementException ex) { isWait = true ; if (k == 0 ) System.out.print( "waitWebElement(" + by.toString() + ")" ); else System.out.print( "." ); Thread.sleep( 50 ); } } if (isWait) System.out.println( " outTime!" ); return null ; } |
注意:有一個問題還沒有解決,還無法區分陰影部分是黑色還是白色。 因為兩種的情況不同,所以處理方式也不同。陰影部分為黑底時需要轉灰度和二值化,為白底時不需要。黑底使用歸一化平方差匹配算法 TM_SQDIFF ,而白底使用相關系數匹配算法 TM_CCOEFF。
到此這篇關于使用java + selenium + OpenCV破解網易易盾滑動驗證碼的文章就介紹到這了,更多相關java滑動驗證碼內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家!
原文鏈接:https://blog.csdn.net/weixin_49701447/article/details/109740160