一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語(yǔ)言編程技術(shù)及教程分享平臺(tái)!
分類導(dǎo)航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務(wù)器之家 - 腳本之家 - Python - 對(duì)Keras自帶Loss Function的深入研究

對(duì)Keras自帶Loss Function的深入研究

2021-11-12 12:57Forskamse Python

這篇文章主要介紹了對(duì)Keras自帶Loss Function的深入研究,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教

本文研究Keras自帶的幾個(gè)常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

對(duì)Keras自帶Loss Function的深入研究

對(duì)Keras自帶Loss Function的深入研究

注意到二者的主要差別在于輸入是否為integer tensor。在文檔中,我們還可以找到關(guān)于二者如何選擇的描述:

對(duì)Keras自帶Loss Function的深入研究

解釋一下這里的Integer target 與 Categorical target,實(shí)際上Integer target經(jīng)過(guò)獨(dú)熱編碼就變成了Categorical target,舉例說(shuō)明:

(類別數(shù)5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
					 [0. 0. 1. 0. 0.]
					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法來(lái)實(shí)現(xiàn)二者的轉(zhuǎn)化:

from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的輸入?yún)?shù)output,都是softmax輸出的tensor。我們都知道softmax的輸出服從多項(xiàng)分布,

因此categorical_crossentropy和sparse_categorical_crossentropy應(yīng)當(dāng)應(yīng)用于多分類問(wèn)題。

我們?cè)倏纯催@兩個(gè)的源碼,來(lái)驗(yàn)證一下:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor of the same shape as `output`.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last", and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  # Note: nn.softmax_cross_entropy_with_logits_v2
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output = output / math_ops.reduce_sum(output, axis, True)
    # manual computation of crossentropy
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
    return -math_ops.reduce_sum(target * math_ops.log(output), axis)
  else:
    return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy with integer targets.
  Arguments:
      target: An integer tensor.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last", and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  if axis != rank - 1:
    permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
    output = array_ops.transpose(output, perm=permutation)
  # Note: nn.sparse_softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output)
  output_shape = output.shape
  targets = cast(flatten(target), "int64")
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
      labels=targets, logits=logits)
  if len(output_shape) >= 3:
    # If our output includes timesteps or spatial dimensions we need to reshape
    return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
    return res

categorical_crossentropy計(jì)算交叉熵時(shí)使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本質(zhì)并無(wú)區(qū)別,只是對(duì)輸入?yún)?shù)logits的要求不同,v2要求的是logits與labels格式相同(即元素也是獨(dú)熱的),而sparse則要求logits的元素是個(gè)數(shù)值,與上面Integer format和Categorical format的對(duì)比含義類似。

綜上所述,categorical_crossentropy和sparse_categorical_crossentropy只不過(guò)是輸入?yún)?shù)target類型上的區(qū)別,其loss的計(jì)算在本質(zhì)上沒(méi)有區(qū)別,就是交叉熵;二者是針對(duì)多分類(Multi-class)任務(wù)的。

2. Binary_crossentropy

對(duì)Keras自帶Loss Function的深入研究

二元交叉熵,從名字中我們可以看出,這個(gè)loss function可能是適用于二分類的。文檔中并沒(méi)有詳細(xì)說(shuō)明,那么直接看看源碼吧:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.
  Returns:
      A tensor.
  """
  # Note: nn.sigmoid_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源碼中計(jì)算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的應(yīng)該比較熟悉這個(gè)損失函數(shù)了,它可以用于簡(jiǎn)單的二分類,也可以用于多標(biāo)簽任務(wù),而且應(yīng)用廣泛,在樣本合理的情況下(如不存在類別不均衡等問(wèn)題)的情況下,通常可以直接使用。

補(bǔ)充:keras自定義loss function的簡(jiǎn)單方法

首先看一下Keras中我們常用到的目標(biāo)函數(shù)(如mse,mae等)是如何定義的

from keras import backend as K
def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
    """Expects a binary class matrix instead of a vector of scalar classes.
    """
    return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
    """expects an array of integer classes.
    Note: labels shape must have the same number of dimensions as output shape.
    If you get a shape error, add a length-1 dimension to labels.
    """
    return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
    return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
    y_true = K.clip(y_true, K.epsilon(), 1)
    y_pred = K.clip(y_pred, K.epsilon(), 1)
    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
    y_true = K.l2_normalize(y_true, axis=-1)
    y_pred = K.l2_normalize(y_pred, axis=-1)
    return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定義特定任務(wù)的目標(biāo)函數(shù)。比如:定義預(yù)測(cè)值與真實(shí)值的差

from keras import backend as K
def new_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)

然后,應(yīng)用你自己定義的目標(biāo)函數(shù)進(jìn)行編譯

from keras import backend as K
def my_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=["accuracy"])

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持服務(wù)器之家。

原文鏈接:https://forskamse.blog.csdn.net/article/details/89426537

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 女人被男人躁得好爽免费视频 | 99热久久这里只有精品23 | 国产成人综合亚洲一区 | 99久久香蕉国产综合影院 | 国产精品久久久久毛片 | 国产精品九九免费视频 | 青草视频久久 | 亚洲精品综合一区二区 | h杯奶水太多h| 思敏1一5集国语版免费观看 | 麻豆资源 | 免费观看欧美成人禁片 | 久久精品国产色蜜蜜麻豆国语版 | 精品国产日韩亚洲一区在线 | 天海翼最新作品 | 日本黄a三级三级三级 | 5g影院天天爽爽 | 我强进了老师身体在线观看 | 久久精品视频在线看 | 国产成人青草视频 | 国产91页 | 国产成人91高清精品免费 | 深夜国产在线 | 午夜免费啪视频观看视频 | 精品午夜视频 | 毛片应用 | 久久国产精品永久免费网站 | 精品国产原创在线观看视频 | voyeur 中国女厕 亚洲女厕 | 波多野给衣一区二区三区 | 香蕉91xj.cc| 精品视频免费在线观看 | 国产在线观看福利 | 精品精品久久宅男的天堂 | 欧美调教打屁股spank视频 | 亚洲精品成人456在线播放 | 欧美图片小说 | 国产一级特黄在线播放 | 99久久精品自在自看国产 | 亚洲日韩中文字幕一区 | 魔兽官方小说 |