一区二区三区在线-一区二区三区亚洲视频-一区二区三区亚洲-一区二区三区午夜-一区二区三区四区在线视频-一区二区三区四区在线免费观看

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - 一文搞懂Python Sklearn庫使用

一文搞懂Python Sklearn庫使用

2021-12-23 00:12qq_29750461 Python

Python sklearn庫是一個豐富的機器學習,本文通過實例代碼給大家介紹了Python Sklearn庫使用方法,需要的朋友可以參考下

python sklearn庫是一個豐富的機器學習庫,里面包含內容太多,這里對一些工程里常用的操作做個簡要的概述,以后還會根據(jù)自己用的進行更新。

1、labelencoder

簡單來說 labelencoder 是對不連續(xù)的數(shù)字或者文本進行按序編號,可以用來生成屬性/標簽

?
1
2
3
4
5
from sklearn.preprocessing import labelencoder
encoder=labelencoder()
encoder.fit([1,3,2,6])
t=encoder.transform([1,6,6,2])
print(t)

輸出: [0 3 3 1]

2、onehotencoder

onehotencoder 用于將表示分類的數(shù)據(jù)擴維,將[[1],[2],[3],[4]]映射為 0,1,2,3的位置為1(高維的數(shù)據(jù)自己可以測試):

?
1
2
3
4
from sklearn.preprocessing import onehotencoder
onehot=onehotencoder()#聲明一個編碼器
onehot.fit([[1],[2],[3],[4]])
print(onehot.transform([[2],[3],[1],[4]]).toarray())

輸出:[[0. 1. 0. 0.]
[0. 0. 1. 0.]
[1. 0. 0. 0.]
[0. 0. 0. 1.]]
正如keras中的keras.utils.to_categorical(y_train, num_classes)

3、sklearn.model_selection.train_test_split隨機劃分訓練集和測試集

一般形式:
train_test_split是交叉驗證中常用的函數(shù),功能是從樣本中隨機的按比例選取train data和testdata,形式為:

?
1
x_train,x_test, y_train, y_test =train_test_split(train_data,train_target,test_size=0.2, train_size=0.8,random_state=0)

參數(shù)解釋:
- train_data:所要劃分的樣本特征集
- train_target:所要劃分的樣本結果
- test_size:測試樣本占比,如果是整數(shù)的話就是樣本的數(shù)量

-train_size:訓練樣本的占比,(注:測試占比和訓練占比任寫一個就行)
- random_state:是隨機數(shù)的種子。
- 隨機數(shù)種子:其實就是該組隨機數(shù)的編號,在需要重復試驗的時候,保證得到一組一樣的隨機數(shù)。比如你每次都填1,其他參數(shù)一樣的情況下你得到的隨機數(shù)組是一樣的。但填0或不填,每次都會不一樣。
隨機數(shù)的產(chǎn)生取決于種子,隨機數(shù)和種子之間的關系遵從以下兩個規(guī)則:
- 種子不同,產(chǎn)生不同的隨機數(shù);種子相同,即使實例不同也產(chǎn)生相同的隨機數(shù)。

?
1
2
3
4
5
6
7
8
9
10
11
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris=load_iris()
train=iris.data
target=iris.target
# 避免過擬合,采用交叉驗證,驗證集占訓練集20%,固定隨機種子(random_state)
train_x,test_x, train_y, test_y = train_test_split(train,
                                                   target,
                                                   test_size = 0.2,
                                                   random_state = 0)
print(train_y.shape)

得到的結果數(shù)據(jù):train_x : 訓練集的數(shù)據(jù),train_y:訓練集的標簽,對應test 為測試集的數(shù)據(jù)和標簽


4、pipeline

本節(jié)參考與文章:用 pipeline 將訓練集參數(shù)重復應用到測試集
pipeline 實現(xiàn)了對全部步驟的流式化封裝和管理,可以很方便地使參數(shù)集在新數(shù)據(jù)集上被重復使用。

pipeline 可以用于下面幾處:

  • 模塊化 feature transform,只需寫很少的代碼就能將新的 feature 更新到訓練集中。
  • 自動化 grid search,只要預先設定好使用的 model 和參數(shù)的候選,就能自動搜索并記錄最佳的 model。
  • 自動化 ensemble generation,每隔一段時間將現(xiàn)有最好的 k 個 model 拿來做 ensemble。

問題是要對數(shù)據(jù)集 breast cancer wisconsin 進行分類,
該數(shù)據(jù)集包含 569 個樣本,第一列 id,第二列類別(m=惡性腫瘤,b=良性腫瘤),
第 3-32 列是實數(shù)值的特征。

我們要用 pipeline 對訓練集和測試集進行如下操作:

  • 先用 standardscaler 對數(shù)據(jù)集每一列做標準化處理,(是 transformer)
  • 再用 pca 將原始的 30 維度特征壓縮的 2 維度,(是 transformer)
  • 最后再用模型 logisticregression。(是 estimator)
  • 調用 pipeline 時,輸入由元組構成的列表,每個元組第一個值為變量名,元組第二個元素是 sklearn 中的 transformer
  • 或 estimator。

注意中間每一步是 transformer,即它們必須包含 fit 和 transform 方法,或者 fit_transform。
最后一步是一個 estimator,即最后一步模型要有 fit 方法,可以沒有 transform 方法。

然后用 pipeline.fit對訓練集進行訓練,pipe_lr.fit(x_train, y_train)
再直接用 pipeline.score 對測試集進行預測并評分 pipe_lr.score(x_test, y_test)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import labelencoder
from sklearn.preprocessing import standardscaler
from sklearn.decomposition import pca
from sklearn.linear_model import logisticregression
 
from sklearn.pipeline import pipeline
#需要聯(lián)網(wǎng)
df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data',
                 header=none)
                                 # breast cancer wisconsin dataset
x, y = df.values[:, 2:], df.values[:, 1]
encoder = labelencoder()
y = encoder.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.2, random_state=0)
pipe_lr = pipeline([('sc', standardscaler()),
                    ('pca', pca(n_components=2)),
                    ('clf', logisticregression(random_state=1))
                    ])
pipe_lr.fit(x_train, y_train)
print('test accuracy: %.3f' % pipe_lr.score(x_test, y_test))

還可以用來選擇特征:

例如用 selectkbest 選擇特征,
分類器為 svm,

?
1
2
3
anova_filter = selectkbest(f_regression, k=5)
clf = svm.svc(kernel='linear')
anova_svm = pipeline([('anova', anova_filter), ('svc', clf)])

當然也可以應用 k-fold cross validation:

pipeline 的工作方式:

當管道 pipeline 執(zhí)行 fit 方法時,
首先 standardscaler 執(zhí)行 fit 和 transform 方法,
然后將轉換后的數(shù)據(jù)輸入給 pca,
pca 同樣執(zhí)行 fit 和 transform 方法,
再將數(shù)據(jù)輸入給 logisticregression,進行訓練。

一文搞懂Python Sklearn庫使用

5 perdict 直接返回預測值

predict_proba返回每組數(shù)據(jù)預測值的概率,每行的概率和為1,如訓練集/測試集有 下例中的兩個類別,測試集有三個,則 predict返回的是一個 3*1的向量,而 predict_proba 返回的是 3*2維的向量,如下結果所示。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# conding :utf-8
from sklearn.linear_model import logisticregression
import numpy as np
 
x_train = np.array([[1, 2, 3],
                    [1, 3, 4],
                    [2, 1, 2],
                    [4, 5, 6],
                    [3, 5, 3],
                    [1, 7, 2]])
 
y_train = np.array([3, 3, 3, 2, 2, 2])
 
x_test = np.array([[2, 2, 2],
                   [3, 2, 6],
                   [1, 7, 4]])
 
clf = logisticregression()
clf.fit(x_train, y_train)
 
# 返回預測標簽
print(clf.predict(x_test))
 
# 返回預測屬于某標簽的概率
print(clf.predict_proba(x_test))

一文搞懂Python Sklearn庫使用

6 sklearn.metrics中的評估方法

1. sklearn.metrics.roc_curve(true_y. pred_proba_score, pos_labal)

計算roc曲線,roc曲線有三個屬性:fpr, tpr,和閾值,因此該函數(shù)返回這三個變量,l

2. sklearn.metrics.auc(x, y, reorder=false):

計算auc值,其中x,y分別為數(shù)組形式,根據(jù)(xi, yi)在坐標上的點,生成的曲線,然后計算auc值;

?
1
2
3
4
5
6
7
8
9
10
import numpy as np
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
y = np.array([1,0,2,2])
pred = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = roc_curve(y, pred, pos_label=2)
print(tpr)
print(fpr)
print(thresholds)
print(auc(fpr, tpr))

3. sklearn.metrics.roc_auc_score(true_y, pred_proba_y)

直接根據(jù)真實值(必須是二值)、預測值(可以是0/1, 也可以是proba值)計算出auc值,中間過程的roc計算省略

7 gridsearchcv

gridsearchcv,它存在的意義就是自動調參,只要把參數(shù)輸進去,就能給出最優(yōu)化的結果和參數(shù)。但是這個方法適合于小數(shù)據(jù)集,一旦數(shù)據(jù)的量級上去了,很難得出結果。這個時候就是需要動腦筋了。數(shù)據(jù)量比較大的時候可以使用一個快速調優(yōu)的方法——坐標下降。它其實是一種貪心算法:拿當前對模型影響最大的參數(shù)調優(yōu),直到最優(yōu)化;再拿下一個影響最大的參數(shù)調優(yōu),如此下去,直到所有的參數(shù)調整完畢。這個方法的缺點就是可能會調到局部最優(yōu)而不是全局最優(yōu),但是省時間省力,巨大的優(yōu)勢面前,還是試一試吧,后續(xù)可以再拿bagging再優(yōu)化。

回到sklearn里面的gridsearchcv,gridsearchcv用于系統(tǒng)地遍歷多種參數(shù)組合,通過交叉驗證確定最佳效果參數(shù)。

gridsearchcv的sklearn官方網(wǎng)址:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.gridsearchcv.html#sklearn.model_selection.gridsearchcv

classsklearn.model_selection.gridsearchcv(estimator,param_grid, scoring=none, fit_params=none, n_jobs=1, iid=true, refit=true,cv=none, verbose=0, pre_dispatch='2*n_jobs', error_score='raise',return_train_score=true)

常用參數(shù)解讀

estimator:所使用的分類器,如estimator=randomforestclassifier(min_samples_split=100,min_samples_leaf=20,max_depth=8,max_features='sqrt',random_state=10), 并且傳入除需要確定最佳的參數(shù)之外的其他參數(shù)。每一個分類器都需要一個scoring參數(shù),或者score方法。

param_grid:值為字典或者列表,即需要最優(yōu)化的參數(shù)的取值,param_grid =param_test1,param_test1 = {'n_estimators':range(10,71,10)}。

scoring :準確度評價標準,默認none,這時需要使用score函數(shù);或者如scoring='roc_auc',根據(jù)所選模型不同,評價準則不同。字符串(函數(shù)名),或是可調用對象,需要其函數(shù)簽名形如:scorer(estimator, x, y);如果是none,則使用estimator的誤差估計函數(shù)。

cv :交叉驗證參數(shù),默認none,使用三折交叉驗證。指定fold數(shù)量,默認為3,也可以是yield訓練/測試數(shù)據(jù)的生成器。

refit :默認為true,程序將會以交叉驗證訓練集得到的最佳參數(shù),重新對所有可用的訓練集與開發(fā)集進行,作為最終用于性能評估的最佳模型參數(shù)。即在搜索參數(shù)結束后,用最佳參數(shù)結果再次fit一遍全部數(shù)據(jù)集。

iid:默認true,為true時,默認為各個樣本fold概率分布一致,誤差估計為所有樣本之和,而非各個fold的平均。

verbose:日志冗長度,int:冗長度,0:不輸出訓練過程,1:偶爾輸出,>1:對每個子模型都輸出。

n_jobs: 并行數(shù),int:個數(shù),-1:跟cpu核數(shù)一致, 1:默認值。

pre_dispatch:指定總共分發(fā)的并行任務數(shù)。當n_jobs大于1時,數(shù)據(jù)將在每個運行點進行復制,這可能導致oom,而設置pre_dispatch參數(shù),則可以預先劃分總共的job數(shù)量,使數(shù)據(jù)最多被復制pre_dispatch次

進行預測的常用方法和屬性

grid.fit():運行網(wǎng)格搜索

grid_scores_:給出不同參數(shù)情況下的評價結果

best_params_:描述了已取得最佳結果的參數(shù)的組合

best_score_:成員提供優(yōu)化過程期間觀察到的最好的評分

?
1
2
3
4
5
6
7
8
9
10
model=lasso()
alpha_can=np.logspace(-3,2,10)
np.set_printoptions(suppress=true)#設置打印選項
print("alpha_can=",alpha_can)
#cv :交叉驗證參數(shù),默認none 這里為5折交叉
# param_grid:值為字典或者列表,即需要最優(yōu)化的參數(shù)的取值
lasso_model=gridsearchcv(model,param_grid={'alpha':alpha_can},cv=5)#得到最好的參數(shù)
lasso_model.fit(x_train,y_train)
print('超參數(shù):\n',lasso_model.best_params_)
print("估計器\n",lasso_model.best_estimator_)

一文搞懂Python Sklearn庫使用

如果有transform,使用pipeline簡化系統(tǒng)搭建流程,將transform與分類器串聯(lián)起來(pipelineof transforms with a final estimator)

?
1
2
3
4
5
6
7
8
pipeline= pipeline([("features", combined_features), ("svm", svm)]) 
param_grid= dict(features__pca__n_components=[1, 2, 3], 
                  features__univ_select__k=[1,2], 
                  svm__c=[0.1, 1, 10]) 
   
grid_search= gridsearchcv(pipeline, param_grid=param_grid, verbose=10
grid_search.fit(x,y) 
print(grid_search.best_estimator_)

8 standardscaler

作用:去均值和方差歸一化。且是針對每一個特征維度來做的,而不是針對樣本。

【注意:】
并不是所有的標準化都能給estimator帶來好處。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# 統(tǒng)計訓練集的 mean 和 std 信息
from sklearn.preprocessing import standardscaler
import numpy as np
 
 
def test_algorithm():
    np.random.seed(123)
    print('use standardscaler')
    # 注:shape of data: [n_samples, n_features]
    data = np.random.randn(3, 4)
    scaler = standardscaler()
    scaler.fit(data)
    trans_data = scaler.transform(data)
    print('original data: ')
    print(data)
    print('transformed data: ')
    print(trans_data)
    print('scaler info: scaler.mean_: {}, scaler.var_: {}'.format(scaler.mean_, scaler.var_))
    print('\n')
 
    print('use numpy by self')
    mean = np.mean(data, axis=0)
    std = np.std(data, axis=0)
    var = std * std
    print('mean: {}, std: {}, var: {}'.format(mean, std, var))
    # numpy 的廣播功能
    another_trans_data = data - mean
    # 注:是除以標準差
    another_trans_data = another_trans_data / std
    print('another_trans_data: ')
    print(another_trans_data)
 
 
if __name__ == '__main__':
    test_algorithm()

運行結果:

一文搞懂Python Sklearn庫使用

一文搞懂Python Sklearn庫使用

9 polynomialfeatures

使用sklearn.preprocessing.polynomialfeatures來進行特征的構造。

它是使用多項式的方法來進行的,如果有a,b兩個特征,那么它的2次多項式為(1,a,b,a^2,ab, b^2)。

polynomialfeatures有三個參數(shù)

degree:控制多項式的度

interaction_only: 默認為false,如果指定為true,那么就不會有特征自己和自己結合的項,上面的二次項中沒有a^2和b^2。

include_bias:默認為true。如果為true的話,那么就會有上面的 1那一項。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import pandas as pd
from sklearn.neighbors import kneighborsclassifier
from sklearn.model_selection import gridsearchcv
from sklearn.pipeline import pipeline
 
path = r"activity_recognizer\1.csv"
# 數(shù)據(jù)在https://archive.ics.uci.edu/ml/datasets/activity+recognition+from+single+chest-mounted+accelerometer
df = pd.read_csv(path, header=none)
df.columns = ['index', 'x', 'y', 'z', 'activity']
 
knn = kneighborsclassifier()
knn_params = {'n_neighbors': [3, 4, 5, 6]}
x = df[['x', 'y', 'z']]
y = df['activity']
 
from sklearn.preprocessing import polynomialfeatures
 
poly = polynomialfeatures(degree=2, include_bias=false, interaction_only=false)
x_ploly = poly.fit_transform(x)
x_ploly_df = pd.dataframe(x_ploly, columns=poly.get_feature_names())
print(x_ploly_df.head())

運行結果:

x0 x1 x2 x0^2 x0 x1 x0 x2 x1^2 \
0 1502.0 2215.0 2153.0 2256004.0 3326930.0 3233806.0 4906225.0
1 1667.0 2072.0 2047.0 2778889.0 3454024.0 3412349.0 4293184.0
2 1611.0 1957.0 1906.0 2595321.0 3152727.0 3070566.0 3829849.0
3 1601.0 1939.0 1831.0 2563201.0 3104339.0 2931431.0 3759721.0
4 1643.0 1965.0 1879.0 2699449.0 3228495.0 3087197.0 3861225.0

x1 x2 x2^2
0 4768895.0 4635409.0
1 4241384.0 4190209.0
2 3730042.0 3632836.0
3 3550309.0 3352561.0
4 3692235.0 3530641.0

4、10+款機器學習算法對比

sklearn api:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

4.1 生成數(shù)據(jù)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
np.random.seed(10)
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.linear_model import logisticregression
from sklearn.ensemble import (randomtreesembedding, randomforestclassifier,
                              gradientboostingclassifier)
from sklearn.preprocessing import onehotencoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve,accuracy_score,recall_score
from sklearn.pipeline import make_pipeline
from sklearn.calibration import calibration_curve
import copy
print(__doc__)
from matplotlib.colors import listedcolormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import standardscaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import mlpclassifier
from sklearn.neighbors import kneighborsclassifier
from sklearn.svm import svc
from sklearn.gaussian_process import gaussianprocessclassifier
from sklearn.gaussian_process.kernels import rbf
from sklearn.tree import decisiontreeclassifier
from sklearn.ensemble import randomforestclassifier, adaboostclassifier
from sklearn.naive_bayes import gaussiannb
from sklearn.discriminant_analysis import quadraticdiscriminantanalysis
 
# 數(shù)據(jù)
x, y = make_classification(n_samples=100000)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state = 4000# 對半分
x_train, x_train_lr, y_train, y_train_lr = train_test_split(x_train,
                                                            y_train,
                                                            test_size=0.2,random_state = 4000)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
 
def ylabel(y_pred):
    y_pred_f = copy.copy(y_pred)
    y_pred_f[y_pred_f>=0.5] = 1
    y_pred_f[y_pred_f<0.5] = 0
    return y_pred_f
 
def acc_recall(y_test, y_pred_rf):
    return {'accuracy': accuracy_score(y_test, ylabel(y_pred_rf)), \
            'recall': recall_score(y_test, ylabel(y_pred_rf))}

4.2 八款主流機器學習模型

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
h = .02  # step size in the mesh
names = ["nearest neighbors", "linear svm", "rbf svm",
         "decision tree", "neural net", "adaboost",
         "naive bayes", "qda"]
# 去掉"gaussian process",太耗時,是其他的300倍以上
 
classifiers = [
    kneighborsclassifier(3),
    svc(kernel="linear", c=0.025),
    svc(gamma=2, c=1),
    #gaussianprocessclassifier(1.0 * rbf(1.0)),
    decisiontreeclassifier(max_depth=5),
    #randomforestclassifier(max_depth=5, n_estimators=10, max_features=1),
    mlpclassifier(alpha=1),
    adaboostclassifier(),
    gaussiannb(),
    quadraticdiscriminantanalysis()]
 
predicteight = {}
for name, clf in zip(names, classifiers):
    predicteight[name] = {}
    predicteight[name]['prob_pos'],predicteight[name]['fpr_tpr'],predicteight[name]['acc_recall'] = [],[],[]
    predicteight[name]['importance'] = []
    print('\n --- start model : %s ----\n'%name)
    %time clf.fit(x_train, y_train)
    # 一些計算決策邊界的模型 計算decision_function
    if hasattr(clf, "decision_function"):
        %time prob_pos = clf.decision_function(x_test)
        # # the confidence score for a sample is the signed distance of that sample to the hyperplane.
    else:
        %time prob_pos= clf.predict_proba(x_test)[:, 1]
        prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
        # 需要歸一化
    predicteight[name]['prob_pos'] = prob_pos
 
    # 計算roc、acc、recall
    predicteight[name]['fpr_tpr'] = roc_curve(y_test, prob_pos)[:2]
    predicteight[name]['acc_recall'] = acc_recall(y_test, prob_pos)  # 計算準確率與召回
 
    # 提取信息
    if hasattr(clf, "coef_"):
        predicteight[name]['importance'] = clf.coef_
    elif hasattr(clf, "feature_importances_"):
        predicteight[name]['importance'] = clf.feature_importances_
    elif hasattr(clf, "sigma_"):
        predicteight[name]['importance'] = clf.sigma_
        # variance of each feature per class 在樸素貝葉斯之中體現(xiàn)

結果輸出類似:

automatically created module for ipython interactive environment
 
 --- start model : nearest neighbors ----
 
cpu times: user 103 ms, sys: 0 ns, total: 103 ms
wall time: 103 ms
cpu times: user 2min 8s, sys: 3.43 ms, total: 2min 8s
wall time: 2min 9s
 
 --- start model : linear svm ----
 
cpu times: user 25.4 s, sys: 149 ms, total: 25.6 s
wall time: 25.6 s
cpu times: user 3.47 s, sys: 1.23 ms, total: 3.47 s
wall time: 3.47 s

4.3 樹模型 - 隨機森林

案例地址:http://scikit-learn.org/stable/auto_examples/ensemble/plot_feature_transformation.html#sphx-glr-auto-examples-ensemble-plot-feature-transformation-py

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
'''
model 0 : lm
logistic
'''
print('lm 開始計算...')
lm = logisticregression()
%time lm.fit(x_train, y_train)
y_pred_lm = lm.predict_proba(x_test)[:, 1]
fpr_lm, tpr_lm, _ = roc_curve(y_test, y_pred_lm)
lm_ar = acc_recall(y_test, y_pred_lm)  # 計算準確率與召回
 
'''
model 1 : rt + lm
無監(jiān)督變換 + lg
'''
# unsupervised transformation based on totally random trees
print('隨機森林編碼+lm 開始計算...')
 
 
rt = randomtreesembedding(max_depth=3, n_estimators=n_estimator,
    random_state=0)
# 數(shù)據(jù)集的無監(jiān)督變換到高維稀疏表示。
 
rt_lm = logisticregression()
pipeline = make_pipeline(rt, rt_lm)
%time pipeline.fit(x_train, y_train)
y_pred_rt = pipeline.predict_proba(x_test)[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)
rt_lm_ar = acc_recall(y_test, y_pred_rt)  # 計算準確率與召回
 
'''
model 2 : rf / rf+lm
'''
print('\n 隨機森林系列 開始計算... ')
 
# supervised transformation based on random forests
rf = randomforestclassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = onehotencoder()
rf_lm = logisticregression()
rf.fit(x_train, y_train)
rf_enc.fit(rf.apply(x_train))  # rf.apply(x_train)-(1310, 100)     x_train-(1310, 20)
# 用100棵樹的信息作為x,載入做lm模型
%time rf_lm.fit(rf_enc.transform(rf.apply(x_train_lr)), y_train_lr)
 
y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(x_test)))[:, 1]
fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm)
rf_lm_ar = acc_recall(y_test, y_pred_rf_lm)  # 計算準確率與召回
 
'''
model 2 : grd / grd + lm
'''
print('\n 梯度提升樹系列 開始計算... ')
 
grd = gradientboostingclassifier(n_estimators=n_estimator)
grd_enc = onehotencoder()
grd_lm = logisticregression()
grd.fit(x_train, y_train)
grd_enc.fit(grd.apply(x_train)[:, :, 0])
%time grd_lm.fit(grd_enc.transform(grd.apply(x_train_lr)[:, :, 0]), y_train_lr)
 
y_pred_grd_lm = grd_lm.predict_proba(
    grd_enc.transform(grd.apply(x_test)[:, :, 0]))[:, 1]
fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm)
grd_lm_ar = acc_recall(y_test, y_pred_grd_lm)  # 計算準確率與召回
 
# the gradient boosted model by itself
y_pred_grd = grd.predict_proba(x_test)[:, 1]
fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd)
grd_ar = acc_recall(y_test, y_pred_grd)  # 計算準確率與召回
 
 
# the random forest model by itself
y_pred_rf = rf.predict_proba(x_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)
rf_ar = acc_recall(y_test, y_pred_rf)  # 計算準確率與召回

輸出結果為:

lm 開始計算...
隨機森林編碼+lm 開始計算...
cpu times: user 591 ms, sys: 85.5 ms, total: 677 ms
wall time: 574 ms
 
 隨機森林系列 開始計算...
cpu times: user 76 ms, sys: 0 ns, total: 76 ms
wall time: 76 ms
 
 梯度提升樹系列 開始計算...
cpu times: user 60.6 ms, sys: 0 ns, total: 60.6 ms
wall time: 60.6 ms

4.4 一些結果展示:每個模型的準確率與召回率

?
1
2
3
4
5
6
7
8
9
10
# 8款常規(guī)模型
for x,y in predicteight.items():
    print('\n ----- the model  : %s , -----\n '%(x)  )
    print(predicteight[x]['acc_recall'])
 
# 樹模型
names = ['lm','lm + rt','lm + rf','gbt + lm','gbt','rf']
ar_list = [lm_ar,rt_lm_ar,rf_lm_ar,grd_lm_ar,grd_ar,rf_ar]
for x,y in zip(names,ar_list):
    print('\n --- %s 準確率與召回為: ---- \n '%x,y)

結果輸出:

 ----- the model  : linear svm , -----
{'recall': 0.84561049445005043, 'accuracy': 0.89100000000000001}
 ---- the model  : decision tree , -----
{'recall': 0.90918264379414737, 'accuracy': 0.89949999999999997}
 ----- the model  : adaboost , -----
{'recall': 0.028254288597376387, 'accuracy': 0.51800000000000002}
 ----- the model  : neural net , -----
{'recall': 0.91523713420787078, 'accuracy': 0.90249999999999997}
 ----- the model  : naive bayes , -----
{'recall': 0.91523713420787078, 'accuracy': 0.89300000000000002}

4.5 結果展示:校準曲線

calibration curves may also be referred to as reliability diagrams.
可靠性檢驗的方式。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# #############################################################################
# plot calibration plots
names = ["nearest neighbors", "linear svm", "rbf svm",
         "decision tree", "neural net", "adaboost",
         "naive bayes", "qda"]
 
 
plt.figure(figsize=(15, 15))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
 
ax1.plot([0, 1], [0, 1], "k:", label="perfectly calibrated")
for prob_pos, name in [[predicteight[n]['prob_pos'],n] for n in names] + [(y_pred_lm,'lm'),
                       (y_pred_rt,'rt + lm'),
                       (y_pred_rf_lm,'rf + lm'),
                       (y_pred_grd_lm,'gbt + lm'),
                       (y_pred_grd,'gbt'),
                       (y_pred_rf,'rf')]:
 
    prob_pos = (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
 
    fraction_of_positives, mean_predicted_value = calibration_curve(y_test, prob_pos, n_bins=10)
 
    ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
             label="%s" % (name, ))
 
    ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
             histtype="step", lw=2)
 
ax1.set_ylabel("fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('calibration plots  (reliability curve)')
 
ax2.set_xlabel("mean predicted value")
ax2.set_ylabel("count")
ax2.legend(loc="upper center", ncol=2)
 
plt.tight_layout()
plt.show()

第一張圖
fraction_of_positives,每個概率片段,正數(shù)的比例= 正數(shù)/總數(shù)
mean predicted value,每個概率片段,正數(shù)的平均值
第二張圖
每個概率分數(shù)段的個數(shù)

結果展示為:

一文搞懂Python Sklearn庫使用

一文搞懂Python Sklearn庫使用

4.6 模型的結果展示:重要性輸出

大家都知道一些樹模型可以輸出重要性,回歸模型可以輸出系數(shù),帶有決策平面的(譬如svm)可以計算點到?jīng)Q策邊界的距離。

?
1
2
3
4
5
6
7
8
9
# 重要性
print('\n -------- radomfree importances ------------\n')
print(rf.feature_importances_)
print('\n -------- gradientboosting importances ------------\n')
print(grd.feature_importances_)
print('\n -------- logistic coefficient  ------------\n')
lm.coef_
# 其他幾款模型的特征選擇
[[predicteight[n]['importance'],n] for n in names if predicteight[n]['importance'] != [] ]

在本次10+機器學習案例之中,可以看到,可以輸出重要性的模型有:
隨機森林rf.feature_importances_
gbtgrd.feature_importances_
decision tree decision.feature_importances_
adaboost adaboost.feature_importances_

可以計算系數(shù)的有:線性模型,lm.coef_ 、 svm svm.coef_

naive bayes得到的是:naivebayes.sigma_

解釋為:variance of each feature per class

4.7 roc值的計算與plot

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_lm, tpr_lm, label='lr')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='rt + lr')
plt.plot(fpr_rf, tpr_rf, label='rf')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='rf + lr')
plt.plot(fpr_grd, tpr_grd, label='gbt')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='gbt + lr')
# 8 款模型
for (fpr,tpr),name in [[predicteight[n]['fpr_tpr'],n] for n in names] :
    plt.plot(fpr, tpr, label=name)
 
 
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.title('roc curve')
plt.legend(loc='best')
plt.show()
 
plt.figure(2)
plt.xlim(0, 0.2)
plt.ylim(0.4, 1)     # ylim改變     # matt
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_lm, tpr_lm, label='lr')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='rt + lr')
plt.plot(fpr_rf, tpr_rf, label='rf')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='rf + lr')
plt.plot(fpr_grd, tpr_grd, label='gbt')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='gbt + lr')
for (fpr,tpr),name in [[predicteight[n]['fpr_tpr'],n] for n in names] :
    plt.plot(fpr, tpr, label=name)
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')
plt.title('roc curve (zoomed in at top left)')
plt.legend(loc='best')
plt.show()

一文搞懂Python Sklearn庫使用一文搞懂Python Sklearn庫使用

到此這篇關于一文搞懂python sklearn庫使用方法的文章就介紹到這了,更多相關python sklearn庫內容請搜索服務器之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持服務器之家!

原文鏈接:https://blog.csdn.net/qq_29750461/article/details/81559848

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 九九精品国产 | 2021国产麻豆剧传媒剧情 | 国产福利一区二区三区 | 欧美性理论片在线观看片免费 | 免费av在线视频 | 国产精品一区二区不卡的视频 | 无码人妻精品一区二区蜜桃在线看 | 日本在线观看视频 | 99精品视频免费在线观看 | 我要看免费毛片 | 狠狠插入| 国产精品成人扳一级aa毛片 | 男人疯狂擦进女人下面 | 免费国产一级观看完整版 | 国产精品自在线 | 欧美成年黄网站色高清视频 | 国产毛片在线高清视频 | 好看的亚洲视频 | poren18日本老师hd | 成年性午夜免费视频网站不卡 | 国内精品国语自产拍在线观看55 | 99精品国产自产在线观看 | 欧美骚熟 | 男人和女人全黄一级毛片 | 99ri精品| 亚洲国产AV一区二区三区四区 | 激情艳妇之性事高h | 好吊色永久免费视频大全 | 青青成人| 人人澡人 | 日韩一卡2卡3卡新区网站 | 人人最怕九月羊 | 久久这里只有精品无码3D | 亚洲国产99在线精品一区69堂 | 无罩看奶禁18 | 成人影院免费在线观看 | 男人躁女人过程 | 天天综合天天综合色在线 | h版欧美大片免费观看 | 亚洲成人网页 | 精品香蕉99久久久久网站 |